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A theoretical treatment of X-ray diffraction from composite multilayer systems is given. These systems 
consist of two or three structures placed beside one another, each containing a number of different 
bimolecular leaflets as unit cells. Phase information for one of the structures in the composite system 
can be obtained, if another structure in the system is known precisely, from the interference of X-ray 
photons diffracted by the known structure with photons diffracted by the unknown structure. The exper- 
imental feasibility is demonstrated in an X-ray diffraction experiment. 

1. Introduction 

The bimolecular leaflet of polar lipid molecules is a 
structure of considerable biological interest. It consists 
of two monomolecular lipid films facing each other so 
that a plane of symmetry exists between the two films. 
Such a bimolecular leaflet may be part of the structure 
of biological membranes. There are several ways to pre- 
pare systems which will be called multilayer structures 
where a varying number of bimolecular leaflets are 
stacked on top of each other. X-ray diffraction studies 
on multilayer structures have been done. Discrete la- 
mellar reflections arising from the electron density dis- 
tribution along a z axis normal to the plane of the 
leaflets were obtained (Luzzati, 1968; Levine, Bailey & 
Wilkins, 1968). Structure determinations in these stud- 
ies involved either assumed phase angles for the la- 
metlar reflections or the fitting of assumed models to 
observed X-ray intensity data. 

A method by which the phase problem can be solved 
experimentally for these structures is described in this 
report. It may be briefly stated as follows. A known and 
an unknown structure are placed beside each other 
such that X-ray photons of known phase, diffracted 
by the known (or reference) structure, interfere with 
photons of unknown phase diffracted by the unknown 
structure. Phase information for the unknown multi- 
layer structure may be obtained from the resulting 
intensity data directly, or the generalized Patterson 
function may be used to analyze the intensity data. The 
structures of bimolecular leaflets of fatty acids of 
varying chain length have been determined (Lesslauer 
& Blasie, 1971) and they can be used as reference struc- 
tures. 

This method differs from isomorphous replacement 
to the extent that the reference structure is placed out- 
side of the structure to be investigated. 

Consider a planar multilayer structure comprising 
a stack of identical discs of finite thickness and infinite 

1 
radius. The electron density distribution of the tota 
structure in cylindrical coordinates (r,~,z), where z is 
the stacking direction normal to the plane of the discs, 
may be expressed as: 

Q(r) = Qu.e.(r,~o,z)*llv(z) . (1) 

* stands for a convolution operation, be(z) is a one- 
dimensional lattice peak function. In order to keep 
lz~(z) centrosymmetric in systems with a finite number 
N of discs, IN(z) is defined in the following way for N 
even or odd: 

(N--I)/2 

IN(z)= ~ 6(z-i 'd) 
i=--(N--1)]2 

where i is an integer and 6(z) is a Dirac delta function. 
d is the repeat interval in the z direction, and Qu.e. 
(r, fp,z) is the electron density distribution in a unit 
cell. 

Since we are concerned only with the lamellar re- 
flections arising from the one-dimensional lattice, we 
consider ~u.e.(r, f0,z) to be cylindrically symmetric about 
z and write for ~(r) (Blaurock & Worthington, 1966): 

~o(r) = {o'(r). tu.e.(Z) }*lN(z) (2) 

where a(r) is the electron density distribution in the plane 
and isa constant and tu.e.(Z) is the projection of Qu.e.(r,z) 
along the r direction onto the z axis; subscript u.c. refers 
to unit cell. 

The diffracted X-ray intensity I(r*,z*) in cylindrical 
reciprocal space coordinates (r*#*,z*) where 
z.z*/[zl. Iz*l = 1, is: 

I(r*,z*)oc]S(r*). T(z*)l 2.S(N,z*) (3) 
where 

X(r*)~a(r); T(z*)~t(z)t 

i 
co 

]" Z'(r*)= a(r). J0(2:rrr*) 2ztr dr 
0 

T ( z * ) =  ~+d/2 t(z) exp {-2~izz*} dz. 
O--d/2 



W. L E S S L A U E R  AND J. K. BLASIE  457 

and 

S(N,z*)= 
sin z (re. N. z*. d) 

sin 2 Qr. z*. d) 

is the interference function for a one-dimensional crys- 
tal. Analysis of the lamellar repeat reflections 
I ( r * =  O,z*)=I(z*) provides the electron density distri- 
bution of the unit cell through the plane of the discs 
t(z), if the phase of its transform T(z*) at each samp- 
ling point introduced by S(N,z*) is known. 

A theoretical treatment of diffraction from compo- 
site multilayer systems with 2 and 3 different compo- 
nents will be given. The treatment applies to sym- 
metric and asymmetric structures and it may gain im- 
portance for the latter case, since, in the former, other 
direct methods can solve the phase problem, provided 
diffraction from systems with a small number of unit 
ceils is obtained for such structures. 

2. Treatment of systems with two structures 

A compo3ite multilayer system consisting of a known 
and an unknown multilayer structure is considered 

- - I o ( ~ * ) l  ~ 
--~ Ik(Z~) +lu(~*) 

.vv i V, vv 

Ik,u (:~*) 

Ik(z*), Iu(:i*) 

! I I I I I 

I/Dk 2/Dk 3/Dk4/Dk 5/Dk6/Dk 

z $ 
Fig. 1. Diffracted intensity computed for a composite multi- 

layer structure of two unit cells of phosphatidylcholine and 
two unit cells of barium stearate. I~, Iu, Ie,u(Z*) correspond 
to the first, second and third terms of equation (6), respec- 
tively, ttc(z) and tu(z) were based on models exhibiting the 
essential features of barium stearate and phosphatidylchol- 
ine bimolecular leaflets. 

first. The electron density distribution of the composite 
multilayer structure along the z direction is called g(z). 
If the center of mass of the known structure is defined 
as z=O, 

g(Z)=[tk(z)*llv,k(Z)]*5(Z) 

+['u(z)*lN,u(Z)]*a(z-- { Nkdk+2 Nudu }) (4) 

where the subscripts k and u refer to the known and 
unknown multilayer structures and the convolution 
of these structures with the delta functions places them 
at their appropriate z coordinate. We shall assume 
Nk,u to be even. For Nk or Nu odd, Nk,u has to be 
replaced by (Nk,u + 1) everywhere. 

The intensity l(z*) diffracted by the composite mul- 
tilayer is proportional to ]G(z*)] 2, where G(z*) is the 
one-dimensional Fourier transform of g(z), and 

IG(z*)lz= I Zk(z*)lZlt(Nk,z*)l z + I Tu(z*)lZlZ(Nu,z*)l z 
+ 21Zk(z*)llZ(Nk,z*)llZu(z*)llt(Nu,z*)l 
x cos ([v/x-  v/u]+[2rcz*Aku]) (5) 

]L(Nk,u,Z*)[ z= Sk,u(Nk,u,Z*) ;L (Nk,u,Z*)'~llv,k,u(Z) ; 
Zlc,u(z*)=lTk,u] exp {- iek,u};  

L(Nx,u,z*)=[L1c,ul exp {--iflk,u} ; 
v/k,u = (~k,u +/~k,u); 
A~,u=(Nkdk + Nudu)/2 . 

c~k, u is the phase of the unit-cell transform Tk, u. ilk,u is the 
phase of the lattice transform L~,u and v/k,u is the phase 
of the 'total structure transform', Tk,u(z*). Lk,u(Z*). We 
note that I(z*) data from the known and the unknown 
structure alone independently provide the first two 
terms in equation (5) and all the factors in the last term 
except cos([v/k- v/u] + [2rcz*Ak,u]), since L(Nk,u,z*) 
may be directly calculated for known values of Nk,u 
and dk,u. The number of unit cells Ne and Nu must be 
small to ensure overlap of the maxima of Lk and Lu in 
order to provide appreciable contribution from the 
third term to ]G(z*)[ z, unless de and du are matched 
exactly. 

We consider the factor cos ([v/x-  v/u] + [2rcz*Ak,u]) 
for two cases, tu(Z) centrosymmetric versus tu(z) asym- 
metric. We note that lN,k(z) and lN,u(Z) are centrosym- 
metric for Nk,u even or odd and hence flk,u=O,lr as 
determined by Nk,u and dk,u for any z*. 

tu(z) centrosymmetric 
Since the reference structure tk(z) is centrosymmetric 

also, s in (v /x -v /u )=0  and cos(v/x-v/u)  is either + 1 
or - 1, depending on whether v/~ = v/u or v/k-¢ v/u 
where both v/k,u = 0,re only. Then equation (5) becomes 
(the arguments z* will be dropped for the functions 
G, T, and L in the following discussion): 

Ial 2 :  I Tkl21Lkl 2 + I TulZlZul 2 _ 21ZkllLkll TullLul 
x cos (21rz*Ak,u) (6) 
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where the + uncertainty is the only unknown in this 
expression for IG[ 2. The first two terms are the diffrac- 
tion of the known and unknown structures alone, while 
the third term arises from the interference of photons 
diffracted by the known structure with those diffracted 
by the unknown structure. This interference term either 
adds to or subtracts from the first and second terms, 
depending on whether the phase difference (~ ,e-~ 'u)  
for the 'total structure transforms' (Te. L~) and (Tu. Lu) 
is 0 or zr, respectively. The sign of cos (2zrz*A1e,u) at a 
particular diffraction angle, z*=  (2 sin 0)/2, is known. 

The diffracted intensity I(z*) of the known and the 
unknown structure alone(i.e. I Zkl 2 • I Lkl z andl Tu[ 2. IL,,I 2) 
can be obtained independently. A direct comparison of 
these scaled1" intensities with those from the composite 
structure determines whether (~¢~- ~u)=  0 or n for the 
experimentally accessible range of z*. Since fl~ is known 
for all z*, the phase e~, of the unit cell transform of the 
unknown structure can be obtained. Fourier transfor- 
mation of ITul.exp { - i e u }  finally gives tu(z). 

Fig. 1 shows a computed example of the effect of the 
interference term in the calculated diffracted intensity 
l(z*) for a composite multilayer structure. Models of 
barium stearate and phosphatidyl choline multilayer 
structures were used in the computation for tze(z) and 
tu(z), respectively. The effect of the interference term 
is seen to depend on the relative phases (~qe-~uu) of 
the two 'total structure transforms' (T~. L~) and (Tu- L,,) 
in the manner described above. 

tu(z) asymmetric 
For an asymmetric tu(z) the phase of the total struc- 

ture transform ~u can have all values 0 < ~uu < 2zc. The 
reference structure is again centrosymmetric, (i.e. 
~=0,zc) .  The observed I(z*) can be compared with 
calculated values of IGI z in equation (5) using the known 
values for (IT~,ul.lLk,uD, AIe,u and ~ug and varying 
values of gu until [G[ z matches observed I(z*). Two 
values for ~¢u will give an equally good fit. The more 
probable of the two values may be chosen by intuition, 
or a second reference structure will resolve the ambi- 
guity in sign. Repeating this process for all z* values 
for which I(z*) is available will determine ~u in that 
range of z* and tu(Z) can be determined by a Fourier 
transformation of I Zul" exp { -  icq~} since flu is known 
for all z* and ~u = ~u + flu. 

3. Treatment of systems with three structures 

For reasons that will become apparent below, we in- 
troduce an additional multilayer structure acting as a 

t Correction and scaling factors must be allowed for in the 
observed diffracted intensities. The scaling of the different 
diffraction patterns relative to each other may be accomplished 
by incorporation of an additional structure whose diffraction 
occurs at angles outside the range of z* which is of interest 
for the systems under discussion (e.g. multilayers may be 
built up on evaporated silver mirrors of standard thickness 
and the diffraction from the silver can be used for scaling). 

spacer between the reference and unknown structures. 
We then have for g(z) of the composite multilayer 
structure 

g ( z )  = [ tk (z ) , /u ,~(z ) ] ,~(z )  

+ [ts(z)*llv,s(z)]*6(z-- A k,s) 
+ [t ,,(z)*llv, u(z)]* 6(z - A Ic, u) 

with 

A~,s=(Nkdk + Nsds)/2 ; 

(7) 

L A]I 
Ik,.(Z'Y:) 
I.(Z*) 

5 Ds Co/Ds 4, Ds Ds 

Z ~ 

IG(z* )l 2 

Ik,,,(z*) 
IJz*) 

 J  .LLLLAJ 
. . . .  ~ '  -b ' 

I/Ds ~JDs 3/Ds 4/Ds 5 6/Ds Ds 8/Ds 

z* 
Fig. 2. Diffracted intensities computed for composite multi- 

layer systems with 2 unit cells of barium stearate as known 
structure and two unit cells of barium stearate as 'unknown' 
structure. The spacer between the known and unknown 
structure were (a) 5 unit cells of barium myristate, or (b) 5 
unit cells of barium palmitate. I~.,~(z*) correspond to the 
first and second terms of equation (10). Is(z*) corresponds to 
the diffracted intensity from the spacer alone at z* values 
of h/D, where Ds is the unit-cell dimension of the spacer 
structure along z. 
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Ae,~= Nsds + (Nedk + N~d.)/2 
and 

As ,u=Ae ,u -Ae , s  . 

We again choose N~,u,s even. For Ne, Nu or Ns odd, 
Ne,u,s has to be replaced by (Ne,u,s+ 1). We obtain for 
the Fourier transform of g(z): 

IGlZ= [ TelZlLel 2 + ] Ts[2[Ls] 2 + I TulZlLul 2 
+ 21 Tel. ILel. IT~I. IZ~l 
x cos [(q/g- ~s)+(2nz*Ak,s)] 
+ 21T~1. IL~I" I T~I" ILul 
× cos [ (Vs-  ~u)+(2nz*As,u)] 
+ 21Tel. ILel-1T,,l. IZul 
x cos [ ( ~ e -  ~u)+(2nz*Ak,u)]. (8) 

Equation (8) can be simplified with the following approx- 
imations. Consider the case where de"~_du and both 
de and du are considerably different from ds. Further- 
more, we choose Ne and Nu small (,,~ 2) and Ns larger 
(_> 5). IG[ z has then in certain regions of z* very small 
relative contributions from the second, fourth, and 

l 0 

~ . t  I\ t \ 

Ik,. (z ~) 

IG(P)I ~ 

! | i i ! ! i i i ! ! ! i i ,! i i i ! ' 1  ! i i 

z* 
Fig. 3. Densitometer tracings of a light diffraction experiment; 

t~(z) and tu(Z) are slits of nearly equal width; N~=  Nu =2.  
Ie,u(Z*) correspond to the first and second terms of equation 
(10). IG(z*)l 2 shows the interference fringes of the third term 
of equation (10). Intervals of h/A~,u are marked on the z* 
axis. In the region of z* indicated by a, Te and T,, are out 
of phase for the first time. The fringes in IG(z*)l 2 are shifted 
by 1/2 • A~,u relative to those outside a. 

fifth terms in equation (8) since the maxima of Ls are 
narrow and the products [Zel.lZs[ and [Zsl.]Lu[ dis- 
appear practically everywhere owing to the narrowness 
of Ls and the inequalities ds~du,k. In these regions of 
z*, [G] 2 becomes then approximately 

[GI 2 ~-IT~IZlLel 2 + [Tul 2. ILu[ 2 + 21Tel. IL~I" I Zul" IL~I 
× cos [(~ 'e-  ~u)+(2nz*A~,u)]. (9) 

A computed example is shown in Fig. 2. [G[ 2 is cal- 
culated for a composite multilayer structure with five 
unit cells of either barium palmitate of barium myri- 
state as spacer structure. The known and unknown 
structures were identical for this calculation, and com- 
prised two unit cells of barium stearate each. With 
myristate as spacer structure the approximations for 
equation (9) are satisfied in the intervals 1/ds <_ z* < 3/ds 
and 4/ds <_z* <7/ds, and with palmitate as spacer in 
2/ds < z* < 6/ds. The fringes seen in these intervals arise 
from the third term in equation (9). Using fatty acids 
of proper chain length for the spacer and reference 
structures, we may choose the z* regions in which these 
fringes can be seen in an unperturbed condition. 

tu(Z) centrosymmetric 
Since te(z) is also centrosymmetric, equation (9) be- 

comes for the appropriate conditions mentioned above: 

IG[E= I Tkl z. ILel 2 + ]Tul  2. ILul  2 

+ 2.1Tel.lLel.ITul.lLul.cos(2nz*Ak,u) (10) 

for reasons identical to those mentioned in § 2. The 
only difference between equations (10) and (6) is  
that the separation A~,u includes now the spacer 
structure. This results in a frequency for cos(2nz*Ae,u) 
which is~considerably greater than the fluctuations in 
IZel, IZel, IZul and ltul. The fringes introduced in IGI 2 
by this cosine term are readily recognizable. The posi- 
tion of these fringes relative to the origin z*=0  de- 
pends on the sign of the third term. 

For V/u= ~0'e, the sign is positive and the fringes 
occur at h/Ag,u, where h is an integer, relative to the 
origin. For g u ¢  ~ug, i.e. (~ue-gtu)=n, the fringes are 
displaced by 1/2. Ae,u from the positions for ~Uu = ~k" 

Hence, by determining the positions of the fringes 
relative to the origin in l(z*) from such a composite 
multilayer structure, the relative 'total structure phase' 
( g e -  gu) may be determined over a large range of z* 
using different spacer structures. Then the phase of Tu 
and hence tu(Z) may be determined in the fashion dis- 
cussed in § 2. 

Such fringe shifts are demonstrated in the following 
optical analogue experiment (Fig. 3). te(z) and tu(Z) 
were slits of finite height and of nearly equal width. 
Nk = Nu = 2. No spacer structure as such was used; the 
two double slits [te(z)*le(z)] and [tu(z)*lu(z)] were 
merely physically separated on the mask. Hence, equa- 
tion (10) was satisfied for all z*. The optical transforms 
(Te.Lg) and (Tu.Lu) are shown. The fringes arising 
from cos(2nz*Ae,u) are easily recognizable. The appro- 
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priate shift in the position of these fringes for Vg¢ ~uu 
relative to those for Vt = ~'~ is clearly shown. 

tu(z) asymmetric 
The method we propose here applies as well for 

tu(z) centrosymmetric. Equation (9) may be obtained 
in a different fashion. I G[ 2 and independently the second, 
fourth, and fifth terms in equation (8) can be deter- 
mined experimentally. If we choose Nx, Nu and Ns all 
small (e.g. 2-3) and dt ~ du # ds then [G[ 2 is sufficiently 
slowly varying that the scaled second, fourth, and fifth 
terms can be subtracted from IGI 2 to give an expression 
similar to equation (9) 

IG'lZ- - I Ttl z. ILtl 2 +lZul z. ILul 2 
+ 2. IZtl. ILtl. IZul. It,,I • 
x cos[(vk-Vu)+(2rcz*At,u)]  (11) 

The second term of equation (8), IZslZ.lLd z is ob- 
tained from diffraction by the spacer structure alone, 
while the fourth and fifth terms may be determined ex- 
perimentally from two-structure composite multilayers 
with just the known plus spacer and just the spacer plus 
unknown structures. We may then take the inverse inte- 
gral Fourier transform of IG'I 2 to give the generalized 
Patterson function P(z) for 0_< z*< z~ and Ns not too 
large that the true linewidth of cos (2z~z*At,u) and 
sin (2rcz*Ak,,) can be observed. 

P (z) = [t t(z)* t t( - z)1.[/2v,t(z)* 12v,t( - z)]*f(z ) 
+ [tu(z)*tu(- Z)]*[lN,u(z)*lN,u(-- Z)]*f(Z) 
+ [ t t ( -  z)*IN,t(-  z)]*[tu(z)*lN,u(z)]*f(z-- At,u) 
+ [tt(z)*lu,t(z)]*[tu(-- z)*llv,u(-- z)]*fi(z + At,u) .  

(12) 

For Nk.u small (e.g., N t = N u = 2 )  and Ns<5 (e.g., 
Ns = 2) and dk ~-- du ~ ds the first two terms in equation 
(11) are zero for Iz[ > 2dt,u. Thus, for ]z[ > Ak,u > 2dt,u 
the inverse Fourier transform of ]G'[ 2 is just the 
convolution of the known structure with the un- 
known structure. This second Fourier transformation 
has 'reconstructed' the convolution of the unknown 
structure with the known structure instead of just 
the unknown structure itself as in off-axis Fourier 
transform holography (Smith, 1969). For the latter, we 
would require a narrow slit as our known structure whose 
width is small relative to du analogous to the pinhole 
suggested by Winthrop & Worthington (1965). The un- 
known structure tu(Z) may then be separated from this 
convolution via a suitable recursion process (Hosemann 
& Bagchi, 1962) for tu(z) either centrosymmetric or asym- 
metric. 

4. X-ray diffraction experiments 

Multilayer systems of fatty acids of phospholipids can 
be formed by passing a clean metal surface repeatedly 
through a monomolecular layer of the desired mol- 
ecule(s) spread on the surface of an electrolyte solution 
(Blodgett, 1935). The planes of the bimolecular leaflets 

are parallel to the plane of the metal surface. The z 
axis is normal to the metal surface. The number of unit 
cells is controlled by the number of passes through the 
monolayer. Composite systems can be formed if Nu 
layers of molecules of the sort u are deposited on top 
of Nk layers of molecules of the sort k. In this way dif- 
fracting systems composed of different structures with 
a defined geometric relation to each other are ob- 
tained. 

A precise knowledge of the electron density distri- 
bution of the reference structure is essential to apply 
the methods outlined above to determine the phase 
angles of an unknown structure. Fatty acid multilayers 
are suitable reference structures for the systems under 
discussion. Diffraction data have been obtained from 
as few as two unit cells of barium stearate and a direct 
determination of its structure has been performed 
(Lesslauer & Blasie, 1971). The projected electron den- 
sity distribution tu.e.(Z) was determined using 9 lamellar 
reflections of a 47 A repeat. The layer of Ba 2+ ions, the 
methylene chains, and the terminal methyl groups were 
easily recognizable in tu.e.(z). This provides a reference 
structure and shows that it is possible to observe dif- 
fraction from systems with a controlled and small num- 
ber of unit cells, which is important both for the case 
of systems with two structures (viz. the reference struc- 
ture) and for that of 3 structures (viz. spacer and re- 
ference structure). 

Fig. 4 illustrates in an X-ray diffraction experiment 
the interference fringes predicted by the third term in 
equation (10) for a composite structure of 2 unit cells 
of barium stearate (reference structure), 5 unit cells of 
barium myristate (spacer) and 2 unit cells of barium 
stearate (unknown structure). This corresponds to the 
computed example in Fig. 2. The fringes can be seen 
most clearly in the range 2/ds<z*< 3/ds. The fringes 
occur at the appropriate z* positions of h/At,u as pre- 
dicted by equation (9). In this example the reference 
and the unknown structure are identical and their trans- 
forms are necessarily everywhere in phase. It is, there- 
fore, impossible to observe the displacement of the 
fringes by 1/2. At,u for the z* regions where Tt and Tu 
are out of phase. The conclusion Vu= ~ut is trivial, 
because tu(Z) = tg(z). Despite this, the experiment in Fig. 
4 demonstrates that the interference term in equations 
(5) and (9) can be experimentally observed in X-ray 
diffraction. The relative magnitude of these fringes 
is in qualitative agreement with Fig. 2. A precise deter- 
mination of the intensities is more difficult as back- 
ground scattering extends into this region. 

The X-ray diffraction pattern in Fig. 4 contains phase 
information out to the 5th lamellar reflection. It is 
expected that the phase angles may be determined by 
this method in the whole z* range where diffraction 
from systems with only a few unit cells is obser- 
ved. 

This work was supported by the U.S. Public Health 
Service grant GM 12202. 
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Fig. 4. X-ray diffraction from a composite multilayer con- 
sisting of 2 unit cells of barium stearate (known structure), 
15 unit cells of bar ium myristate (spacer), and 2 unit cells 
of bar ium stearate (unknown structure). 3 fringes can be 
seen between 2/Ds and 3/Ds. They arise from the third term 
in equation (10) as seen in Fig. 2. The observed intensity 
in the regions 3/Ds, 4/Ds, and 5/Ds can be interpreted in 
terms of Fig. 2 if correction factors are allowed for. (Arrows 
mark diffraction peaks from the spacer structure at h/Ds.) 

[To face p. 460 
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The Resolution Function of a Slow Neutron Rotating Crystal Time-of-Flight Spectrometer 
I. Application to Phonon Measurements 

BY A. FURRER 

Delegation fiir Ausbildung und Hoehsehulforsehung am Eidg. Institut fiir Reaktorforschung, 
Wuerenlingen, Switzerland 

(Received 6 October 1970) 

The resolution function of a slow neutron rotating crystal time-of-flight spectrometer applied to phonon 
measurements is treated analytically. It is demonstrated that every component of the instrument may 
contribute to the uncertainty of the time-of-flight measurement. Focusing conditions are derived leading 
to the concept of removable and irremovable time-of-flight spreads. No approximations are made con- 
cerning the phonon dispersion surface. Experimental evidence is presented to support the resolution 
functions calculated on the basis of this theory. 

l .  Introduction 

In the course of the past decade the scattering of ther- 
mal neutrons has proved to be one of the most versatile 
experimental techniques for studying dynamics and 
structure of solids and liquids. Fig. 1 shows a schematic 
sketch of a slow neutron spectrometer. The essential 
parts are the neutron source, the monochromator sys- 
tem, the sample, and the analyser system, elements of 
which are denoted by the indices 0, 1, 2, 3 according to 
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Fig. 1. Schematic sketch of a slow neutron spectrometer. 0: 
neutron source, 1: monochromator system, 2: sample, 3: 
analyser system. 

the order in which they are located along the neutron 
flight-path. Intermediate elements such as collimators 
C, flight-paths L, and neutron wave-vectors k have 
double indices. The experimental spectrum I(Q, co) ob- 
served by the analyzer is given by the convolution inte- 
gral 

I 
where R(Q, co) is the instrumental resolution function 
and a(Q, co) is the unknown scattering cross section. 
The variables Q, co are defined by the momentum trans- 
fer 

hQ = h ( k l 2 -  k23) (1"2) 

and by the energy transfer 

h 2 2 2 hco= ~ (k l : -k23) ,  (1.3) 

where m denotes the neutron mass. The problem is to 
evaluate a(Q, co) by an unfolding procedure, provided 
R(Q, co) is known. The most accurate method of deter- 
mining R(Q, co) would be a direct measurement re- 
quiring no prior knowledge of instrumental param- 
eters. This, however, is usually impossible except for 
zero energy transfer, so that in general R(Q, co) will 
have to be calculated. This was done analytically by 
Collins (1963), Peckham, Saunderson & Sharp (1967), 


